image
energas.ru

Газовая промышленность № 06 2018

Юбилей

»  01.06.2018 11:00 ЭВОЛЮЦИИ В ПОДВОДНОЙ ДОБЫЧЕ НЕФТИ И ГАЗА
Кратко рассмотрена история развития подводных технологий в мире и на российском шельфе. Для морей России характерен длительный сезонный ледовый покров, что мешает непрерывному развитию данных технологий или приводит к отсутствию их применения. Основная проблема связана с обеспечением надежности применения подводных технологий, поскольку в ледовых условиях техобслуживание и ремонт подводного оборудования затруднены и требуют больших затрат. В статье предлагается алгоритм оценки надежности подводных технологий и определяются требования к подводному оборудованию для применения в России: проектирование с дублированием стандартных компонентов, надлежащие испытания и строгий контроль качества при изготовлении. Развитие нового поколения подводного оборудования для России должно быть направлено на совершенствование технологий компримирования газа, очистки и утилизации пластовых вод, мониторинга состояния и контроля параметров добычи и транспортировки продукции скважин, проведения технологических операций автономными средствами, энергообеспечения, связи и управления. Показаны преимущества разработки морских месторождений с подводным расположением устьев скважин, основное из которых – это поочередной ввод в эксплуатацию, дающий ускоренное получение продукции. Представлена трехэтапная методология разработки и обустройства подводных месторождений и выделены основные факторы: минимизация буровых работ и финансовых затрат, рациональное размещение оборудования.
Ключевые слова: МОРСКАЯ НЕФТЕГАЗОДОБЫЧА, ПОДВОДНЫЙ ДОБЫЧНОЙ КОМПЛЕКС, ГОТОВНОСТЬ ТЕХНОЛОГИЙ, НАДЕЖНОСТЬ, ПОДВОДНАЯ СЕПАРАЦИЯ НЕФТИ И ГАЗА, КОМПРЕССОР, КОНТРОЛЬ СОСТОЯНИЯ.
Открыть PDF


На российском Арктическом шельфе и шельфе дальневосточных морей в настоящее время открыты нефтегазовые месторождения, где сочетание глубин акваторий и ледовых условий не позволяет применять традиционные технологии добычи углеводородов с помощью стационарных или плавучих платформ. Для их освоения требуется создание специальных подводных комплексов. Номенклатура подводных технических средств, изготавливаемых в мире и обеспечивающих нефтегазодобычу, весьма широка. В статье рассматриваются разрывы и недостатки в развитии таких технологий в целях применения их в специфических условиях российского шельфа. Они в основном обусловлены надежностью и операциями по его обеспечению: техобслуживанием и ремонтом подводного оборудования, поскольку в ледовых условиях эти операции затруднены и требуют больших затрат.

Первая скважина с подводным расположением устья была пробурена в 1943 г. на оз. Эри (США) на глубине моря 11,5 м. В 1961 г. компанией Cameron была разработана и изготовлена первая промышленная подводная фонтанная арматура для скважины в Мексиканском заливе. Основным побудительным мотивом к развитию морской нефтедобычи в мире стал нефтяной кризис 1970-х гг. из-за эмбарго, наложенного странами ОПЕК на поставку «черного золота» западным странам. Такие ограничения вынудили американские и европейские нефтяные компании искать альтернативные источники нефтяного сырья путем создания новых технологий, позволявших бурить морские скважины на больших глубинах, и развития подводных технологий добычи углеводородов.

Первая система управления подводным добычным комплексом (ПДК) была установлена в 1963 г., а в 1979 г. появилась подводная система с мультиплексным электрогидравлическим управлением. Прогресс в разработке ПДК в течение 1980–2015 гг. был отмечен появлением подвод- ной фонтанной арматуры в горизонтальном исполнении, новых систем управления, в том числе с полным электроприводом.

Сегодня подводное оборудование для добычи углеводородов в мире производят не более 10 компаний, но насчитывается более 130 морских месторождений, где применяются технологические процессы по добыче углеводородов на морском дне. География распространения подводной добычи обширна: шельфы Северного и Средиземного морей, Индия, Юго-Восточная Азия, Австралия, Западная Африка, Северная и Южная Америка. В России первые добычные комплексы были установлены на шельфе Сахалина в 2013 г. в рамках обустройства Киринского месторождения.

1.png 

ОСОБЕННОСТИ ПОДВОДНОЙ РАЗРАБОТКИ

Разработка морских месторождений с подводным расположением устьев скважин хотя и достаточно сложна, но обладает рядом преимуществ перед традиционными способами надводного оборудования устьев. Основное преимущество заключается в возможности ввода морского месторождения в эксплуатацию очередями, что на практике ведет к ускоренному получению первой продукции.

Пробурить с бурового судна несколько скважин, оборудовать их устья соответствующей подводной арматурой и ввести в эксплуатацию можно значительно быстрее, чем устанавливать дорогостоящую стационарную платформу для бурения с нее наклонно-направленных скважин. Кроме того, подводный метод разработки позволяет выявить некоторые геолого-физические и эксплуатационные параметры месторождений на более ранней стадии разработки.

Общая методология проектирования разработки и обустройства подводных месторождений, по существу, соответствует традиционным схемам, применяемым для ме- сторождений суши и морских место- рождений с платформенным обустройством. Она включает три этапа: анализ характеристик месторождения и условий его эксплуатации; обоснование принципов/концепций разработки залежей и обустройства промысла, которые варьируются в зависимости от региона, особенностей организации проектирования, строительства и эксплуатации месторождения и т. п.; анализ и оптимизацию технологических процессов, местоположения скважин, промысловых объектов и др.

Вместе с тем отличительная особенность проектирования подводных месторождений – выявление и проверка определяющих факторов, влияющих на выбор проектных решений. Например, известно, что низкие температуры требуют использования специальных материалов для подводных конструкций, удорожающих их стоимость, но температуры морской воды на глубинах более 30–50 м практически одинаковы во всех регионах. Температуры транспортировки и хранения оборудования в Арктике, как правило, ниже –40…–50 °С. Но надо ли транспортировать и хранить, а также испытывать подводные системы при таких экстремальных температурах, удорожая конструкцию?

1_1.png

В рамках проекта Arctic Development Roadmap были выявлены и систематизированы ключевые темы, решение которых, по мнению авторов проекта, необходимо для разработки нефтяных и газовых ресурсов в Северном Ледовитом океане. Согласно этому документу к существенным факторам, воздействующим на будущее развитие, отнесены технологии транспорта углеводородов, углубление дна и рытье траншей, моделирование и тренинги, а к потенциально неустранимым помехам – защита окружающей среды. По нашему мнению, подобные оценки не являются вполне убедительными.

При выборе решения по разработке месторождения определяющим фактором является минимизация буровых работ и финансовых затрат путем оптимизации числа и конструкций скважин, а также рационального размещения оборудования на морском дне. Должны проверяться функциональные требования к монтажу и эксплуатации, включая условия транспортировки, хранения и испытаний, а также требования по проведению одновременных операций (например, бурение и монтаж, бурение и добыча).

Преимуществом системы с подводным расположением устья скважин является защищенность всего оборудования, установленного на дне, от внешних погодных условий. Известно, что надводные стационарные платформы представляют значительную навигационную опасность, в то время как при установке оборудования под водой такая опасность практически отсутствует; устраняется также пожарная опасность.

При этом существенным недостатком систем с подводным расположением устья является трудность доступа к устьевому оборудованию, особенно при наличии ледового покрова и необходимости частых ремонтов скважин. Так, по данным компании Statoil, одного из лидеров в области технологий подводного освоения месторождений, сравнение статистических показателей эффективности добычи за 2010–2012 гг. при платформенном и подводном обустройстве месторождений Северного моря по всей цепочке от скважины до платформы показало, что коэффициент эксплуатации скважин с сухим устьем (на платформах) составляет 91,8 %, а для подводных скважин – 86,5 %, т. е. эффективность платформенной добычи на месторождениях на 5,3 % выше.

Повышенные потери добычи на месторождениях с ПДК связаны в основном с райзерами и промысловыми трубопроводами, приводящими к внеплановым потерям добычи в связи с необходимостью ремонтно-восстановительного обслуживания (3,7 %). Статистика внеплановых потерь добычи на ПДК приведена на рис. 1.

Очевидно, что для морей России, характеризующихся длительным ледовым режимом и относительной недоступностью устьев скважин в этот период, коэффициент эксплуатации подводных скважин может оказаться существенно ниже.

1_1_1.png

ПРИМЕНЕНИЕ НОВЫХ ТЕХНОЛОГИЙ

При освоении морских месторождений и обосновании схем размещения подводного добычного оборудования весьма важным является учет специфических условий региона (например, Арктики) и выявление применимости существующих системных решений или выявление разрывов в развитии/отсутствии технологий для обеспечения проектных решений.

Разрывы в процессе развития технологий возможны двух типов: концепции, улучшение которых возможно за счет новых технологий, но при этом существуют апробированные технологии; концепции, которые полностью зависят от новых технологий, так как такие технологии отсутствуют.

Уровень готовности технологий определяется по API RP 17N [1] (см. табл.). Как правило, многие нефтегазовые операторы заявляют о готовности новой технологии к внедрению на месторождениях при завершении стадий разработки TRL 4 и TRL 5.

Проблема обеспечения надежности – одна из важнейших при применении подводной технологии, поскольку инспекция подвод- ного оборудования затруднена, а его обслуживание и (или) замена требуют больших затрат. Кроме того, отказ подводного оборудования непосредственно влияет на состояние окружающей среды. И наконец, подводное оборудование должно обеспечивать непрерывность добычи и окупаемость капитальных вложений.

Согласно данным компании FMC Technologies, оценку надежности новых технологий можно производить по схеме, приведенной на рис. 2, которая основана на методике, разработанной Норвежским квалификационным обществом (Det Norske Veritas) [2].

Для использования подводных технологий в условиях ледовых морей важно обеспечить приемлемость методов технического обслуживания компонентов подводного оборудования для инспекции, ремонта или замены.

В связи с этим необходимо заложить в подводные системы принцип частичного дублирования, который обеспечивал бы надежность и был гарантией непрерывности добычи. Поэтому модульные системы должны проектироваться с дублированием стандартных компонентов, проходить надлежащие испытания и изготавливаться со строгим контролем качества.

В любой системе могут быть уникальные, предназначенные только для данного месторождения компоненты. Они не извлекаются и служат в течение всего периода разработки месторождения. В такой ситуации возможны два подхода: обеспечить высокую надежность этих компонентов подводной системы; проектировать системы таким образом, чтобы в случае отказа одних компонентов их функции могли взять на себя другие компоненты. Поэтому при решении задач обеспечения надежности подвод- ных систем необходимо сочетать творческую изобретательность с осторожным применением новых идей, а характер обслуживания подводных систем наряду с результатами анализа их рентабельности должен учитываться при решении вопроса о применении подводной технологии.

Рассматривая развитие технологий подводной подготовки продукции скважин, следует отметить, что изначально перед подводным оборудованием ставилась только задача по добыче нефти. В первых проектах под водой проходила только сепарация газа от жидких углеводородов, после чего последние выкачивались насосом на поверхность, а подъем газа осуществлялся под собственным давлением. Вместе с тем задачи использования остаточного потенциала месторождений путем продления периода эффективной эксплуатации, снижения затрат на жизненный цикл месторождения и увеличение добычи обусловили активное развитие технологий подводной подготовки скважинной продукции.

В работе [3] детально рассмот- рены мировой опыт применения и перспективы развития систем подводной сепарации нефти и газа. Согласно [3] размещение технологического оборудования на морском дне в непосредственной близости от устьев скважин позволяет более эффективно осуществлять разработку месторождения, в частности: поддерживать необходимое для добычи тяжелой нефти давление на устье; повышать давление на входе во внутрипромысловую систему сбора для месторождений с низким пластовым давлением; снижать риски, связанные с гидратообразованием в системе сбора; обес- печивать эффективную добычу нефти при повышении уровня обводненности за счет использования сепараторов «нефть – вода»; более гибко подходить к проектированию верхних строений морских платформ за счет размещения части технологического процесса на морском дне; значительно снижать эксплуатационные затраты за счет подбора оптимального дожимного оборудования (например, применяя однофазные насосы взамен многофазных).

Технологии подводного компримирования используются на газовых месторождениях при больших расстояниях до берега или существующих платформ и обеспечивают: снижение капитальных затрат и эксплуатационных расходов; увеличение коэффициента газоотдачи пласта; бесперебойность потока и исключение выбросов и сбросов в море.

Увеличение коэффициента извлечения газа на месторождении Ормен Ланге при применении подводного компримирования показано на рис. 3.

Первая подводная насосно-компрессорная станция была разработана компанией Kvaerner в 1989 г. На основе работ по изготовлению в 2001–2003 гг. компрессора Demo 2000 компанией Aker Solutions в 2004–2012 гг. была разработана и изготовлена пилотная станция Ormen Lange, которая прошла аттестацию технологии и строительства, а также испытания в бассейне. По результатам пилотных испытаний к 2016 г. была изготовлена полномасштабная компрессорная станция мощностью 58 МВт, включающая четыре параллельные линии компримирования, аналогичные пилотному образцу, с общей производительностью 70 млн м3/сут, и установлена на месторождении Ормен Ланге на расстоянии 120 км от берега и глубине моря 900 м.

В 2015 г. на месторождении Асгард, отстоящем на расстоянии 40 км от технологической платформы и глубине моря ~300 м, была также установлена подводная компрессорная станция мощностью 23 МВт и производительностью 21 млн м3/сут, что было обусловлено падением добычи из-за больших потерь давления по сравнению с ожидаемыми и ранним прорывом воды в скважине Z, а также необходимостью исключения динамической неустойчивости в трубопроводах.

Помимо этих двух проектов, компания Statoil реализовала третью программу, связанную с использованием подводной компрессорной станции для влажного газа на действующем месторождении Гуллфакс, которое было открыто в 1978 г. и с 1986 г. находилось в эксплуатации. В данном проекте использовался иной принцип, нежели в системах для месторождений Асгард и Ормен Ланге, а именно многофазная компрессорная технология, не требующая высокой производительности: два компрессора влажного газа мощностью 5 МВт, производительностью 12 млн м3 газа в сутки. Цель проекта заключалась в увеличении добычи на месторождении Гуллфакс путем закачки газа в скважину для повышения давления на нефтеносных горизонтах и дополнительного извлечения 22 млн баррелей нефти. Но уже через месяц после установки в 2015 г. первый в мире подводный компрессор для влажного газа HOFIM был снят с месторождения из-за обнаружения в нем утечки.

Тем не менее опыт применения технологий подводного компримирования на месторождениях Ормен Ланге, Асгард и Гуллфакс выявил преимущества подвод- ного компримирования, которые заключаются в следующем: создание более безопасных условий эксплуатации промысловых объектов (без присутствия людей); предотвращение накопления жидкости в трубопроводе за счет увеличения скорости перекачки; значительное снижение инвестиций и эксплуатационных затрат по сравнению с вариантом компримирования газа на платформе; повышение эффективности компримирования за счет расположения компрессора ближе к скважинам; возможность разработки месторождений с малым пластовым давлением, низкой проницаемостью пласта и сложными свойствами флюидов.

Хотя комплексы подводного компримирования газа в будущем позволят отказаться от объектов надводной инфраструктуры, современные технологии имеют ограничения по энергообеспечению. Они позволяют передавать мощности по энергопотреблению 20–30 МВт на расстояние до 50 км, а мощности 10–20 МВт – до 250 км.

Компания Aker Solutions, мировой лидер в области подводного компримирования, создала новый подводный компактный компрессор Compact GasBooster™ с малыми габаритными размерами (5,5 × 5,0 × 8,0 м), высокоэффективными компонентами, низким весом, упрощенной конструкцией и развивает следующие направления совершенствования компрессорных станций: использование высокоэффективных центробежных компрессоров, допускающих присутствие жидкой фазы в компримируемом газе; максимально компактные решения, ведущие к снижению веса и стоимости подводной компрессорной станции (ПКС); возможности расширения границ применения технологий подводного компримирования – на любых глубинах моря и при большом диапазоне давлений газа; совершенствование систем мониторинга в реальном времени состояния и эксплуатационных параметров работы ПКС, обеспечивающих надежную и безопасную работу подводных систем компримирования.

 

ЗАКЛЮЧЕНИЕ

Перспективы дальнейшего развития подводных технологий связываются с проблемами освоения месторождений арктических морей, максимизацией нефте- и газоизвлечения путем создания полного подводного обустройства месторождений.

Разработки нового поколения оборудования должны быть направлены на совершенствование подводных технологий в области: компримирования газа; обратной закачки попутного газа; очистки и утилизации пластовых вод; контроля параметров добычи и транспортировки продукции скважин; контроля состояния эксплуатационных характеристик подвод- ного оборудования; проведения технологических операций автономными средствами; энергообес- печения, связи и управления.

Уровень готовности технологий Level of the technology ready

Уровень

Level 

Стадия разработки

Development stage

Описание технологии

Description of technology

TRL 0

Недоказанная идея

Unproven idea

Предварительный план. Анализ или испытания не выполнены

Preliminary plan. Analysis or tests are not performed

TRL 1

Аналитически доказанная идея

Analytically proven idea

Функциональность доказана путем расчета, отсылкой к общим характеристикам существующих технологий или испытана на отдельных компонентах и (или) подсистемах. Эта концепция может не отвечать всем требованиям на данном уровне, но демонстрирует базовую функциональность и потенциал соответствия требованиям при проведении дополнительных испытаний

Functionality is proven by calculation, by referring to the general characteristics of existing technologies or it is tested on individual components and (or) subsystems. This concept may not meet all the requirements at this level, but demonstrates the basic functionality and the potential for compliance with the requirements for additional tests

TRL 2

Физически доказанная концепция

Physically proven concept

Концептуальное решение или новые характеристики решения, подтвержденного моделью или испытаниями в лабораторных условиях. Система выявляет способность функционирования в «реальной» среде с имитацией ключевых параметров окружающей среды

Conceptual solution or new characteristics of a solution, confirmed by a model or tests in the laboratory. The system reveals the ability to function in a “real” environment with the imitation of key environmental parameters

TRL 3

Испытание опытного образца

Prototype testing

Создается опытный образец в реальном масштабе и подвергается испытаниям на соответствие техническим условиям в ограниченном диапазоне условий эксплуатации для демонстрации его функциональности

Prototype is being created on a real scale and subjected to testing for compliance with specifications in a limited range of operating conditions to demonstrate its functionality

TRL 4

Полевые испытания

Field tests

Создается опытный полномасштабный образец и испытывается по программе на соответствие техническим требованиям при имитационных или фактических условиях природной среды

Test full-scale sample is created and tested according to the program for compliance with technical requirements under imitation or actual environmental conditions

TRL 5

Испытания на уровне интеграции в систему

Integration-level testing

Создается опытный полномасштабный образец и интегрируется в эксплуатационную систему с полным интерфейсом и испытаниями на соответствие техническим требованиям

Test full-scale sample is created and integrated into the operational system with a full interface and tests for compliance with technical requirements

TRL 6

Установка системы

Installation of the system

Создается опытный полномасштабный образец и интегрируется в предназначенную эксплуатационную систему с полным интерфейсом и испытаниями на соответствие техническим требованиям в предполагаемой природной среде, где успешно работает в течение ≥10 % предполагаемого срока эксплуатации

Test full-scale sample is created and integrated into the intended operational system with a full interface and tests for compliance with technical requirements in the proposed natural environment and successfully works for ≥10 % of the expected service life

TRL 7

Доказанная технология

Proven technology

Производственная единица интегрируется в эксплуатационную систему и успешно работает в течение ≥10 % предполагаемого срока эксплуатации

Production unit is integrated into the production system and successfully works for ≥10% of the expected service life

 




← Назад к списку